278 research outputs found

    Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The microbial community in the gut of termites is responsible for the efficient decomposition of recalcitrant lignocellulose. Prominent features of this community are its complexity and the associations of prokaryotes with the cells of cellulolytic flagellated protists. Bacteria in the order Bacteroidales are involved in associations with a wide variety of gut protist species as either intracellular endosymbionts or surface-attached ectosymbionts. In particular, ectosymbionts exhibit distinct morphological patterns of the associations. Therefore, these Bacteroidales symbionts provide an opportunity to investigate not only the coevolutionary relationships with the host protists and their morphological evolution but also how symbiotic associations between prokaryotes and eukaryotes occur and evolve within a complex symbiotic community.</p> <p>Results</p> <p>Molecular phylogeny of 31 taxa of Bacteroidales symbionts from 17 protist genera in 10 families was examined based on 16S rRNA gene sequences. Their localization, morphology, and specificity were also examined by fluorescent in situ hybridizations. Although a monophyletic grouping of the ectosymbionts occurred in three related protist families, the symbionts of different protist genera were usually dispersed among several phylogenetic clusters unique to termite-gut bacteria. Similar morphologies of the associations occurred in multiple lineages of the symbionts. Nevertheless, the symbionts of congeneric protist species were closely related to one another, and in most cases, each host species harbored a unique Bacteroidales species. The endosymbionts were distantly related to the ectosymbionts examined so far.</p> <p>Conclusion</p> <p>The coevolutionary history of gut protists and their associated Bacteroidales symbionts is complex. We suggest multiple independent acquisitions of the Bacteroidales symbionts by different protist genera from a pool of diverse bacteria in the gut community. In this sense, the gut could serve as a reservoir of diverse bacteria for associations with the protist cells. The similar morphologies are considered a result of evolutionary convergence. Despite the complicated evolutionary history, the host-symbiont relationships are mutually specific, suggesting their cospeciations at the protist genus level with only occasional replacements.</p

    Molecular phylogeny and evolution of <i>Parabasalia</i> with improved taxon sampling and new protein markers of actin and elongation factor-1α

    Get PDF
    Background: Inferring the evolutionary history of phylogenetically isolated, deep-branching groups of taxa—in particular determining the root—is often extraordinarily difficult because their close relatives are unavailable as suitable outgroups. One of these taxonomic groups is the phylum Parabasalia, which comprises morphologically diverse species of flagellated protists of ecological, medical, and evolutionary significance. Indeed, previous molecular phylogenetic analyses of members of this phylum have yielded conflicting and possibly erroneous inferences. Furthermore, many species of Parabasalia are symbionts in the gut of termites and cockroaches or parasites and therefore formidably difficult to cultivate, rendering available data insufficient. Increasing the numbers of examined taxa and informative characters (e.g., genes) is likely to produce more reliable inferences. Principal Findings: Actin and elongation factor-1a genes were identified newly from 22 species of termite-gut symbionts through careful manipulations and seven cultured species, which covered major lineages of Parabasalia. Their protein sequences were concatenated and analyzed with sequences of previously and newly identified glyceraldehyde-3-phosphate dehydrogenase and the small-subunit rRNA gene. This concatenated dataset provided more robust phylogenetic relationships among major groups of Parabasalia and a more plausible new root position than those previously reported. Conclusions/Significance: We conclude that increasing the number of sampled taxa as well as the addition of new sequences greatly improves the accuracy and robustness of the phylogenetic inference. A morphologically simple cell is likely the ancient form in Parabasalia as opposed to a cell with elaborate flagellar and cytoskeletal structures, which was defined as most basal in previous inferences. Nevertheless, the evolution of Parabasalia is complex owing to several independent multiplication and simplification events in these structures. Therefore, systematics based solely on morphology does not reflect the evolutionary history of parabasalids

    Phylogenetic Analysis of Cellulolytic Enzyme Genes from Representative Lineages of Termites and a Related Cockroach

    Get PDF
    The relationship between xylophagous termites and the protists resident in their hindguts is a textbook example of symbiosis. The essential steps of lignocellulose degradation handled by these protists allow the host termites to thrive on a wood diet. There has never been a comprehensive analysis of lignocellulose degradation by protists, however, as it has proven difficult to establish these symbionts in pure culture. The trends in lignocellulose degradation during the evolution of the host lineage are also largely unknown. To clarify these points without any cultivation technique, we performed meta-expressed sequence tag (EST) analysis of cDNA libraries originating from symbiotic protistan communities in four termite species and a wood-feeding cockroach. Our results reveal the establishment of a degradation system with multiple enzymes at the ancestral stage of termite-protistan symbiosis, especially GHF5 and 7. According to our phylogenetic analyses, the enzymes comprising the protistan lignocellulose degradation system are coded not only by genes innate to the protists, but also genes acquired by the protists via lateral transfer from bacteria. This gives us a fresh perspective from which to understand the evolutionary dynamics of symbiosis

    Multiple losses of photosynthesis and convergent reductive genome evolution in the colourless green algae Prototheca

    Get PDF
    Autotrophic eukaryotes have evolved by the endosymbiotic uptake of photosynthetic organisms. Interestingly, many algae and plants have secondarily lost the photosynthetic activity despite its great advantages. Prototheca and Helicosporidium are non-photosynthetic green algae possessing colourless plastids. The plastid genomes of Prototheca wickerhamii and Helicosporidium sp. are highly reduced owing to the elimination of genes related to photosynthesis. To gain further insight into the reductive genome evolution during the shift from a photosynthetic to a heterotrophic lifestyle, we sequenced the plastid and nuclear genomes of two Prototheca species, P. cutis JCM 15793 and P. stagnora JCM 9641, and performed comparative genome analyses among trebouxiophytes. Our phylogenetic analyses using plastid- and nucleus-encoded proteins strongly suggest that independent losses of photosynthesis have occurred at least three times in the clade of Prototheca and Helicosporidium. Conserved gene content among these non-photosynthetic lineages suggests that the plastid and nuclear genomes have convergently eliminated a similar set of photosynthesis-related genes. Other than the photosynthetic genes, significant gene loss and gain were not observed in Prototheca compared to its closest photosynthetic relative Auxenochlorella. Although it remains unclear why loss of photosynthesis occurred in Prototheca, the mixotrophic capability of trebouxiophytes likely made it possible to eliminate photosynthesis

    Iron corrosion concomitant with nitrate reduction by Iodidimonas nitroreducens sp. nov. isolated from iodide-rich brine associated with natural gas

    Get PDF
    Microbially influenced corrosion (MIC) may contribute significantly to corrosion-related failures in injection wells and iron pipes of iodine production facilities. In this study, the iron (Fe0) corroding activity of strain Q-1 isolated from iodide-rich brine in Japan and two Iodidimonas strains phylogenetically related to strain Q-1 were investigated under various culture conditions. Under aerobic conditions, the Fe0 foil in the culture of strain Q-1 was oxidized in the presence of nitrate and yeast extract, while those of two Iodidimonas strains were not. The amount of oxidized iron in this culture was six times higher than in the aseptic control. Oxidation of Fe0 in aerobic cultures of nitrate-reducing bacterium Q-1 was dependent on the formation of nitrite from nitrate. This Fe0 corrosion by nitrate-reducing bacterium Q-1 started after initial nitrite accumulation by day 4. Nitrate reduction in strain Q-1 is a unique feature that distinguishes it from two known species of Iodidimonas. Nitrite accumulation was supported by the encoding of genes for nitrate reductase and the missing of genes for nitrite reduction to ammonia or nitrogen gas in its genome sequence. Phylogenetic position of strain Q-1 based on the 16S rRNA gene sequence was with less than 96.1% sequence similarity to two known Iodidimonas species, and digital DNA–DNA hybridization (dDDH) values of 17.2-19.3%, and average nucleotide identity (ANI) values of 73.4-73.7% distinguished strain Q-1 from two known species. In addition of nitrate reduction, the ability to hydrolyze aesculin and gelatin hydrolysis and cellular fatty acid profiles also distinguished strain Q-1 from two known species. Consequently, a new species, named Iodidimonas nitroreducens sp. nov., is proposed for the nitrate-reducing bacterium strain Q-1T

    Gibbsiella papilionis Kim et al. 2013 is a later heterotypic synonym of gibbsiella dentisursi Saito et al. 2013

    Get PDF
    © 2015 IUMS. Synonymy of Gibbsiella dentisursi DSM 23818T (=NUM 1720T) and Gibbsiella papilionis JCM 18389T (=LEN33T) was suspected following multilocus sequence analysis (MLSA) of both type strains in a previous classification study, where they were found to share >99.6% gene sequence similarity. The taxonomic relationship between these two strains was re-examined here using a polyphasic approach. A DNA-DNA hybridization value of 98% confirmed that the two type strains belong to a single taxon, while the phenotypic profiles were found to be nearly identical. Therefore we propose Gibbsiella papilionis as a later heterotypic synonym of Gibbsiella dentisursi, with the type strain as NUM 1720T (=DSM 23818T=JCM 17201T)

    Coevolution of Metabolic Pathways in Blattodea and Their Blattabacterium Endosymbionts, and Comparisons with Other Insect-Bacteria Symbioses

    Get PDF
    Many insects harbor bacterial endosymbionts that supply essential nutrients and enable their hosts to thrive on a nutritionally unbalanced diet. Comparisons of the genomes of endosymbionts and their insect hosts have revealed multiple cases of mutually-dependent metabolic pathways that require enzymes encoded in 2 genomes. Complementation of metabolic reactions at the pathway level has been described for hosts feeding on unbalanced diets, such as plant sap. However, the level of collaboration between symbionts and hosts that feed on more variable diets is largely unknown. In this study, we investigated amino acid and vitamin/cofactor biosynthetic pathways in Blattodea, which comprises cockroaches and termites, and their obligate endosymbiont Blattabacterium cuenoti (hereafter Blattabacterium). In contrast to other obligate symbiotic systems, we found no clear evidence of “collaborative pathways” for amino acid biosynthesis in the genomes of these taxa, with the exception of collaborative arginine biosynthesis in 2 taxa, Cryptocercus punctulatus and Mastotermes darwiniensis. Nevertheless, we found that several gaps specific to Blattabacterium in the folate biosynthetic pathway are likely to be complemented by their host. Comparisons with other insects revealed that, with the exception of the arginine biosynthetic pathway, collaborative pathways for essential amino acids are only observed in phloem-sap feeders. These results suggest that the host diet is an important driving factor of metabolic pathway evolution in obligate symbiotic systems
    corecore